Exam Code: PROFESSIONAL-DATA-ENGINEER
Exam Name: Professional Data Engineer on Google Cloud Platform
Updated: Nov 22, 2024
Q&As: 331
At Passcerty.com, we pride ourselves on the comprehensive nature of our PROFESSIONAL-DATA-ENGINEER exam dumps, designed meticulously to encompass all key topics and nuances you might encounter during the real examination. Regular updates are a cornerstone of our service, ensuring that our dedicated users always have their hands on the most recent and relevant Q&A dumps. Behind every meticulously curated question and answer lies the hard work of our seasoned team of experts, who bring years of experience and knowledge into crafting these premium materials. And while we are invested in offering top-notch content, we also believe in empowering our community. As a token of our commitment to your success, we're delighted to offer a substantial portion of our resources for free practice. We invite you to make the most of the following content, and wish you every success in your endeavors.
Experience Passcerty.com exam material in PDF version.
Simply submit your e-mail address below to get started with our PDF real exam demo of your Google PROFESSIONAL-DATA-ENGINEER exam.
Instant download
Latest update demo according to real exam
Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?
A. Assign global unique identifiers (GUID) to each data entry.
B. Compute the hash value of each data entry, and compare it with all historical data.
C. Store each data entry as the primary key in a separate database and apply an index.
D. Maintain a database table to store the hash value and other metadata for each data entry.
You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?
A. Update the current pipeline and use the drain flag.
B. Update the current pipeline and provide the transform mapping JSON object.
C. Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.
D. Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.
You want to archive data in Cloud Storage. Because some data is very sensitive, you want to use the "Trust No One" (TNO) approach to encrypt your data to prevent the cloud provider staff from decrypting your data. What should you do?
A. Use gcloud kms keys create to create a symmetric key. Then use gcloud kms encrypt to encrypt each archival file with the key and unique additional authenticated data (AAD). Use gsutil cp to upload each encrypted file to the Cloud Storage bucket, and keep the AAD outside of Google Cloud.
B. Use gcloud kms keys create to create a symmetric key. Then use gcloud kms encrypt to encrypt each archival file with the key. Use gsutil cp to upload each encrypted file to the Cloud Storage bucket. Manually destroy the key previously used for encryption, and rotate the key once and rotate the key once.
C. Specify customer-supplied encryption key (CSEK) in the .boto configuration file. Use gsutil cp to upload each archival file to the Cloud Storage bucket. Save the CSEK in Cloud Memorystore as permanent storage of the secret.
D. Specify customer-supplied encryption key (CSEK) in the .boto configuration file. Use gsutil cp to upload each archival file to the Cloud Storage bucket. Save the CSEK in a different project that only the security team can access.
You have a variety of files in Cloud Storage that your data science team wants to use in their models Currently, users do not have a method to explore, cleanse, and validate the data in Cloud Storage. You are looking for a low code solution that can be used by your data science team to quickly cleanse and explore data within Cloud Storage. What should you do?
A. Load the data into BigQuery and use SQL to transform the data as necessary Provide the data science team access to staging tables to explore the raw data.
B. Provide the data science team access to Dataflow to create a pipeline to prepare and validate the raw data and load data into BigQuery for data exploration.
C. Provide the data science team access to Dataprep to prepare, validate, and explore the data within Cloud Storage.
D. Create an external table in BigQuery and use SQL to transform the data as necessary Provide the data science team access to the external tables to explore the raw data.
You have a data pipeline that writes data to Cloud Bigtable using well-designed row keys. You want to monitor your pipeline to determine when to increase the size of you Cloud Bigtable cluster. Which two actions can you take to accomplish this? Choose 2 answers.
A. Review Key Visualizer metrics. Increase the size of the Cloud Bigtable cluster when the Read pressure index is above 100.
B. Review Key Visualizer metrics. Increase the size of the Cloud Bigtable cluster when the Write pressure index is above 100.
C. Monitor the latency of write operations. Increase the size of the Cloud Bigtable cluster when there is a sustained increase in write latency.
D. Monitor storage utilization. Increase the size of the Cloud Bigtable cluster when utilization increases above 70% of max capacity.
E. Monitor latency of read operations. Increase the size of the Cloud Bigtable cluster of read operations take longer than 100 ms.
Viewing Page 1 of 3 pages. Download PDF or Software version with 331 questions